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Abstract:

A significant quantity of questions remains in cellular biology. Some of them cannot be answered by
applying traditional analytical techniques and request the development of new tools for research.
Nowadays, the integration of microdevices and analytical platforms enables the acquisition of biological
data in an agile and low-cost manner. Additionally, perfusion technologies allow us to recreate
physiological microenvironments. For this reason, the integration of live-cell microscopy, perfusion, and
microsystems, will enable control of the delivery of soluble factors and the tracking of single cells. These
platforms have a vast potential to result in a better understanding of cell behavior, generating evidence for
potential predictive models for disease treatment. We have developed a robust live-imaging fluidic system
for studying breast cancer cells. Our data suggest fast and short pulses as the preferred strategy for
perfused assays. This system will be the basis for further analysis of the effect of stimulatory growth
factors and cytotoxic or cytostatic agents with therapeutic potential. Furthermore, we offer an overview of
the challenges and considerations in the development of automated microsystems.
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Abstract          I 

A significant quantity of questions remains in cellular biology. Some of them cannot 

be answered by applying traditional analytical techniques and request the 

development of new tools for research. Nowadays, the integration of microdevices and 

analytical platforms enables the acquisition of biological data in an agile and low-cost 

manner. Additionally, perfusion technologies allow us to recreate physiological 

microenvironments. 

For this reason, the integration of live-cell microscopy, perfusion, and microsystems, 

will enable control of the delivery of soluble factors and the tracking of single cells. 

These platforms have a vast potential to result in a better understanding of cell 

behavior, generating evidence for potential predictive models for disease treatment. 

We have developed a robust live-imaging fluidic system for studying breast cancer 

cells. Our data suggest fast and short pulses as the preferred strategy for perfused 

assays. This system will be the basis for further analysis of the effect of stimulatory 

growth factors and cytotoxic or cytostatic agents with therapeutic potential. 

Furthermore, we offer an overview of the challenges and considerations in the 

development of automated microsystems. 
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1 Introduction        

 

Cell cultures are highly dynamic. This dynamic feature of cell cultures could lead to 

different results, even if the same protocols were applied(Hines et al., 2014). 

Scientists are aware of the ongoing reproducibility crisis. A survey on Nature journal 

of 1576 researchers has shown that more than 70% have tried and failed to reproduce 

another scientist's experiments, and more than half have failed to reproduce their 

experiments(Baker & Penny, 2016).  

The accessibility of a design to perform live imaging analysis with automated perfusion 

could help us not only to reproduce more realistic conditions but also to obtain much 

more information about our living system, increasing the efficiency and robustness of 

the assays, and potentially an early revelation of variability. However, what kind of 

conditions are best suited for cells in a microfluidic perfusion system are still unclear. 

In these experiments, we expand the knowledge to enable efficient automated 

experiments down the line. 

 

Automation 

 

The importance of continuous long-term observation of cell cultures has been 

recognized for over a century but has been limited by technology(Coutu & Schroeder, 

2013). The advance on automated microscopy provides tools to follow and analyze 

the cultured cells carefully, generating a tremendous amount of image data. The 

fourth industrial revolution suggests the integration of modern technologies and 

promises to be the age of artificial intelligence (Figure 1)(Demandbase, n.d.). 

We hypothesize that the clue to optimize cell cultures can be hidden behind the 

limitations of the human perception (Figure 2)(Danuser, 2011). This concept, 

combined with new machine learning algorithms, will enable the capitalization of the 

information obtained from the cell image analysis. Nowadays, researchers developed 

algorithms allowing not only to recognize phenotypes from image data but also to 
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control of bacterial populations in bioreactors(Sommer & Gerlich, 2013; Treloar et al., 

2018). 
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In concordance with the words Professor John Ioannidis, who said, “the replication 

has more value to discovery” and the principles on “Good Cell Culture Practice” 

(GCCP)(Pamies et al., 2018), our first steps are in order to validate the system. 

Figure 2. The strengths of computer vision and human vision in image analysis. 

Computer vision is an application area of Artificial Intelligence (AI) it is based in three 

statements: provide automation of the analysis, generate completeness in the data in that 

every image event fulfilling set selection criteria is considered by the analysis, and give access 

to processes underlying the image content that are not visible(Danuser, 2011). 

Figure 1. The four stages of industrial revolution(Demandbase, n.d.). The current 

fourth revolution is characterized by the combination of digital, biological and physical 

technologies.  
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Cell culture 

 

Almost seventy years have passed since George and Margarite Gey, former scientists 

at Johns Hopkins Hospital Baltimore, received a cervical cancer tissue sample that 

would be the mother of the first established human cell line. The adenocarcinoma 

biopsy taken from Henrietta Lacks will lead to the HeLa cells that are well known by 

the scientific community, not only for its usage but also for its intensely 

dissemination(Huether-Franken, 2017; Jedrzejczak-Silicka, 2017). 

Since this breakthrough event, cells were cultivated, exposed to irradiation, infected, 

and sent to space, all on behalf of science(NIH Office of Science Policy, n.d.). Live 

organism cultures are widely used for drug testing, the prime matter of bioprinters, 

production of therapeutic proteins, and monoclonal antibodies(Corsello et al., 2020; 

Ecker et al., 2015; Vijayavenkataraman et al., 2018). Moreover, human cell cultures 

are expanding terrain as possible personalized therapies(Farina et al., 2017; Y. Liu et 

al., 2017; Trounson et al., 2011). In the future, therapies based on tissue and organ 

culture could play a pivotal role in overcoming currently irreversible health conditions. 

So much is the importance of cellular behavior that scientists attempt to develop 

mathematical models and even games to expand knowledge barriers(Mertelsmann & 

Georg, 2016; Oña & Lachmann, 2020). 

However, there are also challenges, disadvantages, and limitations of the classic 

culture methods(Geraghty et al., 2014; Jedrzejczak-Silicka, 2017). For instance, 

typical static in vitro culture does not reflect the in vivo scenario creating a non-

physiological environment. As a solution, microscale devices allowing perfusion are 

developed continuously and proposed as in vitro models(Ando et al., 2017; Ayuso et 

al., 2016; Becker et al., 2019; Yeo et al., 2011). In order to obtain a comprehensive 

knowledge of cell function and behavior, it would be desirable to develop experimental 

methods that could help to interpret the physical and morphological outputs beyond 

the conventional practices based on chemical outcomes (Figure 3)(Azuaje-Hualde et 

al., 2017). Therefore, we want to define the experimental parameters to obtain 

reliable results in a controlled environment in a perfused microsystem. 
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Microsystems 

During the last twenty years, key developments have been addressed in the area of 

microtechnology, which allows introducing control and complexity over a full range of 

Figure 4. Characteristic length scales (approximate) of micro and nanosystems in 

relation to various biological entities23. Micro and nanofluidic devices appeared as an 

approach which decreases sample and reagents consumptions reducing the overall costs. 

Figure 3. Input signals induce internal signaling of cells and modulate their 

outputs, affecting cell behavior(Azuaje-Hualde et al., 2017). Several aspects can be 

considered as input signals, thereupon explore models to mimic physiological conditions 

will expand the knowledge of cell behavior. 
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environmental factors at the microscale level(Ando et al., 2017; Azuaje-Hualde et al., 

2017; Mertelsmann & Georg, 2016) (Figure 4). 

However, the device microenvironment itself may induce undesirable effects on cell 

health, shape, and behavior, leading to bias, failure, or lack of robustness of the 

experiments. Therefore, not only the correct device operation but also the designs 

have significant relevance at the microscale. For this reason, two critical 

considerations are the characteristics of the cells intended to be used within the device 

and the goal of the model we want to develop(Green & Yamada, 2007; Pampaloni et 

al., 2007; Varma & Voldman, 2018). For instance, scientists aim to generate vessel-

on-a-chip models to study physiological and pathophysiological conditions in adapted 

hydrogel structures with internal microchannels(Nie et al., 2018). 

Usually, cells maintained in culture have media in excess. Nevertheless, when they 

are cultured at the microscale, it is necessary to consider well or channel size, as well 

as transport timescales, to ensure access to nutrients. Besides, the functionalization 

of those surfaces plays a vital role. In adherent cell cultures, appropriate coating of 

the wells must be chosen in order not to compromise the health of cells. Material bulk 

and surface properties can impact cell viability and function(L. Chen et al., 2018; 

Ferrari et al., 2019; Varma & Voldman, 2018). 

As we mentioned before, cells are cultured at the macroscale, but it is necessary to 

step into microscale environments. Fundamentally, nutrients and ion imbalances must 

be prevented in cell suspensions before allocating the cells on the devices. Long term 

cell culture devices need to provide cells with an adequate amount of oxygen and 

nutrients while removing waste products to maintain cellular homeostasis. On the 

other hand, the excess of media will dilute autocrine factors essential for cell growth, 

demonstrating how crucial it is to determine the balance between waste removal and 

media renewal(Varma & Voldman, 2018). In previous studies, different perfusion 

strategies were analyzed searching for an optimal robust long-term microfluidic cell 

culture(Giulitti et al., 2013). Computational simulations suggested that different 

delivery strategies result in different temporal profiles of accumulation and washing 

out of endogenous and exogenous factors, respectively. These strategies were defined 

by a parameter φ = t perfusion/t cycle, which is the ratio between the perfusion time and 

the duration of a single cycle. Assuming a 6 hours cycle, three cases were considered: 

a continuous strategy (P0), characterized by φ = 1, and two periodic strategies, one 
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with a fast-media pulse (P1), φ = 0.02, and one with a long media pulse (P2), φ = 

0.25. In each case, a volume of twice of the chamber was perfused during 6 hours of 

a single cycle. The authors exposed cultures to the same overall amount of medium 

with different temporal profiles and analyzed homogeneity, cell morphology, and 

phenotype(Giulitti et al., 2013). In this research, we evaluate those strategies in our 

perfused system, and additionally, traditional static cell culture was performed and 

analyzed as a control (Table 1). 

There are many recommendations to maintain viable and healthy cells on 

microdevices. Since cells are manipulated and cultured in liquid environments, fluid 

shear stress (FSS) is always involved. Even if FSS can produce benefits in cells such 

as maintenance of endothelial cell function(Topper & Gimbrone, 1999), mostly, it is 

pointed out as a stressor(Kolnik et al., 2012). An unappropriated amount of FSS can 

not only induce morphology changes but also complex biological cascades, increasing 

the amount of reactive oxygen species and compromising the viability (Figure 

5)(Giulitti et al., 2013; Varma & Voldman, 2018). 
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Furthermore, the method applied to introduce the cells can produce variations on the 

distribution generating abnormal allocations. We must keep in mind the effect of 

gravity to promote a homogeneous seeding practice. In other words, regardless of the 

device to be used, either pipette or syringe, we must consider where gravity tends to 

settle the cells.  

In addition, bubbles are a source of unpredictable experiment failure. Although the 

introduction of bubbles could be prevented by several methods, for instance, by pre-

treatment of the media with sonication and vacuum, occasionally, it is not enough to 

prevent their development. Introducing commercial and self-made de-bubblers can 

contribute to the system to promote a bubble-free environment(Pereiro et al., 2019; 

Zhu et al., 2019).  Nevertheless, bubble generation is regularly related to how the 

whole system and mainly, the device is used or maintained over time. For example, 

it is highly recommended for PDMS or gas-permeable culture devices to pre-

equilibrate in the appropriate CO2 environment previous cell culture because this 

routine will decrease the probability of bubble presence. As a recommendation, 

working at a pressure above atmospheric pressure (pushing liquids) avoids bubble 

introduction through permeable devices that can occur when operating below 

atmospheric pressure (pulling liquids)(Varma & Voldman, 2018). 

On the other hand, there are further considerations regarding the tubbing employed 

on the connections of the system. For instance, a high permeability could enable gases 

to enter the system, or as another example, different temperatures among tubbing 

and device can produce a gradient of solubility of gases, which will come up as 

bubbles. On top of everything, bubbles not only can produce membrane 

damage(Varma & Voldman, 2018) but also modify the illumination of the images 

taken, generating visual heterogeneity on the background, which could lead to 

inaccuracies in the image analysis. 

REGIME FLOW RATE 

(µL/MIN) 

PERFUSION 

(MIN) 

CYCLE 

(MIN) 

MEDIA PER CYCLE 

(µL) 

Φ 

P0 3.9 360 360 1400 1 

P1 200 7 360 1400 0.02 

P2 15.55 90 360 1400 0.25 

STATIC - - - - - 

Table 1. Perfusion strategies. 
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Perfusion systems 

 

The prime objective of using perfusion techniques is to achieve a controlled and 

homogeneous environment(Griffiths, 1990). Nowadays, there are several strategies 

to perfuse cell cultures. Nevertheless, it does not mean that all of them suits to reach 

our goals. Consider the composition of the device is a crucial factor, as we mentioned 

before, working at a pressure above atmospheric pressure (pushing liquids) avoids 

bubble introduction through permeable devices that can occur when operating below 

atmospheric pressure (pulling liquids)(Varma & Voldman, 2018). Additionally, the size 

and volume of the device to perfuse are also decisive. Commercially available pumps 

can manipulate from nanoliters to liters with different accuracy, that is why those 

features will give us a clue which could fit on the perfusion system. However, we will 

never have to forget about the specific requirements of the cell line employed and the 

purpose of the assay.  

Figure 5. Examples of direct and indirect cell damage by microenvironment 

stressors(Varma & Voldman, 2018). Certain stressors can produce early visible direct 

cell damage, in contrast, others can trigger complex biological cascades and affect cell 

health in an indirect form. 
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Peristaltic pumps 

Peristaltic pumps are based on positive displacement in which a flexible conduit is 

pressed to displace the liquid inside the conduit (Figure 6). As a consequence of this 

mechanism, the resultant flow is pulsatile and oscillatory in principle rather than 

constant(Byun et al., 2014). The typical industry standard for fill volume accuracy is 

±0.5%. Peristaltic dispensing pumps meet this requirement for fill volumes as small 

as 0.5 ml. Below that fill volume, accuracy can be as good as ±1%(Jørgensen & 

Lambert, 2008). Furthermore, when utilizing peristaltic pumps, we must consider that 

the pinching mechanism of the pump can cause cellular damage(Byun et al., 2014).  

Syringe pumps 

Syringe pumps are the first flow controller used in microfluidics. In a syringe pump, 

fluid is held in the reservoir of a syringe, and a moveable piston controls fluid 

delivery(FDA, n.d.)(Figure 7). The performance depends on its engine quality and the 

mechanical precision of its moving parts(Elveflow, n.d.-b)with an accuracy of %5 

according to international infusion pump standards(IEC 60601-2-24:2012, 2012; 

Weinger & Kline, 2016). In other words, syringe pumps do not measure flow. Flow is 

calculated as a factor between the respective syringe scale and the constant of the 

minimum piston step. 

Figure 6. Peristaltic pump principle. A flexible tube is wrapped around a rotor that has 

rollers that press the tubing at different positions and as the rotor cam rotates liquid is 

pushed through the tube(Byun et al., 2014). 
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Consequently, it is necessary to consider the size of the syringe to avoid pulsatile flows 

and undesired effects. Small syringe sizes will increase the accuracy at low flow rates. 

Nevertheless, the volume will delimitate the assay. 

Microfluidic pumps 

Microfluidics is the science and technology of systems that process or manipulate small 

(10–9 to 10–18 L) amounts of fluids, usually in channels with dimensions of tens to 

hundreds of micrometers(Whitesides, 2006). As an example, the Elveflow microfluidic 

systems (Elveflow, France) can handle fluids accurately from nanoliters up to milliliters 

and monitored with accuracy low to 5% of the measured value. The benefits of this 

system are the decreased response time and the pressure stability with a standard 

deviation of 0.005%, resulting in a pulseless flow(Elveflow, n.d.-a). 

The starter pack of the Elveflow microfluidic system (Elveflow, France) is a software-

controlled system capable of control and monitor the pressure or flow conditions on a 

microfluidic device (Figure 8)(Elveflow, n.d.-a). 

 

Live-cell imaging and Evaluation of Cell Health 

 

Novel technologies have been developed in the field of automated microscopes 

allowing the user to track cells accurately and for extended periods. These 

technologies include robotic stages, environmental chambers, and auto-focus 

methods. Therefore, cellular processes can be followed up over time, even in 

adjustable environments, allowing us to collect an increased amount of information 

about the cellular response under the selected circumstances. The main factor for live-

Figure 7. Motorized syringe pump principle. Syringe pumps use a piston to generate 

positive pressure to push liquids out of a liquid conduit(Byun et al., 2014). 
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cell imaging is to maintain cell viability. Monitored temperature, CO2 level, and 

humidity are crucial in any live-cell imaging experiment, thus environmental chambers 

and stage top incubators were developed to achieve optimal conditions (Figure 

9)(Frigault et al., 2009; Ibidi GmbH, n.d.-b; Jensen, 2013). 

 

Thankfully, time-lapse live imaging allows visualizing the dynamic behavior of cells 

over time(Chirieleison et al., 2011). Nowadays, it is possible to observe in high-quality 

cellular processes from seconds to weeks(Depaoli et al., 2019; Held & Mongeon, 2019; 

Z. Liu et al., 2015) (Figure 10). Cellular response assays as calcium imaging that are 

fast as seconds still can be appreciated in real-time thanks to the combination of those 

different utilities on the modern microscopes(Desmet et al., 2017). 

Figure 8. Diagram of Elveflow microfluidic system(Elveflow, n.d.-a).(1) OB1 Mk3 

Pressure Controller connected to an external pressure source. The controller receives a 

feedback from OB1 MK3 Flow Controller. (2) The Elveflow software can monitor the 

conditions and communicate with the pressure controller. (3) The pressurized reservoir 

contains the samples ready to infuse (4) The manipulation of the conditions on the 

microfluidic device is the final goal.  
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However, to assess cell state in the device microenvironment, we have to consider 

the variety of assays used for assessing cell health (Figure 11)(Varma & Voldman, 

2018). Mainly, specific assays usually are destructive, costly, and complicated and 

hence technically prohibitive(Varma & Voldman, 2018). In contrast, there are also 

other methods to asses cell health in a gross manner and, at the same time, preserve 

the cell cultures. However, it is necessary a correct sampling of the whole cell 

population to properly asses characteristics as viability or morphology. Several 

authors consider the trypan blue exclusion assay as the gold standard for cell viability 

on their projects48–50. The benefit of this technique is the quick assessment of cell 

number and viability. The continuous follow-up of the cell culture also enables us to 

detect proliferation visually. This image data could be utilized not only to analyze cell 

Figure 10. Examples of cellular response assays48. Several intracellular and cellular 

processes can be observed and therefore, with the appropriate strategy, quantified.  
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behavior but also to generate an image database for further applications. As an 

example, the database can be employed as training data for artificial intelligence 

algorithms and improve cell detection or single-cell tracking. 

Anticancer drugs 

 

For a long time, the standard drug screening was constrained to the analysis of the 

start and endpoints of established cell lines. However, the advances of the technology 

in high content imaging systems gave us a useful tool to obtain even more information 

about these time-lapse assays. 

It is crucial to highlight toxicity and the restricted effectiveness of the anticancer 

agents. That is why the necessity of improving the capacity of drugs and therapies to 

fight against cancer cells without compromising the health condition of patients. On 

the other hand, Cancer is continuously adapting, as the tumor growths, new mutations 

appear, and populations of genetically distinct cells emerge (Figure 12)(Gerstung et 

al., 2017; Willyard, 2016). 

Figure 11. Recommended assays for Cell Health(Varma & Voldman, 2018). Several 

assays can be performed in order to assess healthy cells. Those methods can be categorized 

in cell type dependent or independent. Nevertheless, for a gross assessment it is possible 

to rely in viability and morphology measurements. 
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Currently, the new modality of drug 

administration metronomic 

chemotherapy has emerged to overcome 

the problems caused by the traditional 

chemotherapy regimens, toxicity, and 

therapeutic resistance. This regime is 

based on the frequent administration of 

conventional chemotherapeutic agents 

at low doses with the advantage of 

minimizing side effects and acquired 

drug resistance(Maiti, 2014). 

The most widely used approach in cancer 

research is classical pharmacology, also 

known as phenotypic drug discovery, 

which relays on the in vitro assessment 

of anticancer activity. A phenotypic 

cancer approach is partially explained to 

a lack of an identified target in some 

cancers(Lage et al., 2018).  

New high content automated methods 

can help us to have more robust results, 

increasing the number of experiments. 

Consequently, not only the development 

of modern strategies and drugs will be 

benefited but also facilitate the 

identification of different purposes on 

existing medications for new indications(Pantziarka et al., 2018). 

 

  

Figure 12. Evolving strategies(Willyard, 

2016).  

Oncologists are adapting cancer-treatment 

strategies to consider how a tumor evolves. 
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Breast Cancer 

 

Cancer is a generic term for a large group of diseases that can affect any part of the 

body. One defining feature of cancer is the rapid creation of abnormal cells that grow 

beyond their usual boundaries, and which can then invade adjoining parts of the body 

and spread to other organs, the latter process is referred to as metastasizing. 

Metastases are a significant cause of death from cancer(WHO, n.d.). 

Cancer is a leading cause of death worldwide, accounting for an estimated 9.6 million 

deaths in 2018. Notably, breast cancer is the most common in women, holds the 

second position between the most common cancers with 2.09 million cases, and 

occupies the fifth position between the most commons causes of death by cancer with 

627 000 deaths (Figure 13)(Bray et al., 2018; WHO, n.d.). 

Nowadays, we can define three major breast cancer subtypes: hormone receptor-

positive/ERBB2 negative (HR+/ERBB2−), ERBB2 positive (ERBB2+), and triple-

negative (Table 2)(Waks & Winer, 2019). 

Different therapeutic strategies and new anticancer drugs have been tested over the 

last years, to eradicate the tumor from the breast and lymph nodes to prevent 

metastasis, or in cases of metastatic breast cancer, mitigating symptoms and 

prolonging life.  However, as we mentioned before, new methodologies can lead us to 

more robust and precise results, decreasing the developed resistance to widely known 

therapies, and establishing new ones. Therefore, as first steps, we investigated the 

behavior of breast cancer cell lines in our system, aiming to: 

✓ Develop an automated perfusion system for long-term live cell culture imaging.  

✓ Validate the system with a breast cancer cell line. 

✓ Determine and characterize the cell growth of a breast cancer cell line under 

different perfusion strategies. 

✓ Evaluate the most appropriate perfusion strategy for media delivery. 
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Figure 13: Percentages of new cancer cases and cancer deaths worldwide in 2018(Bray 

et al., 2018). In both sexes combined, lung cancer still the most diagnosed and the leading cause 

of cancer death. However, analyzing in detail, females breast cancer has the highest incidence 

and mortality in females with 24.2% and 15%, respectively. 
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 HR+ / ERBB2- ERBB2+ (HR+ or HR-) Triple-Negative 

Pathological 

definition 

≥1% of tumor cell stain 

positive for estrogen 

receptor or 

progesterone receptor 

proteins 

Tumor cells stain strongly 

(3+) for ERBB2 protein, or 

the ERBB2 gene is 

amplified in tumor cells. 

Approximately half of the 

ERBB2+ tumors are also 

HR+ 

Tumor does not 

meet any pathologic 

criteria for positivity 

of the estrogen 

receptor, 

progesterone 

receptor, or ERBB2. 

Molecular 

pathogenesis 

Estrogen receptor α (a 

steroid hormone 

receptor) activates 

oncogenic growth 

pathways 

The oncogene ERBB2, 

encoding ERBB2 receptor 

tyrosine kinase from the 

epidermal growth factor 

receptor family is 

overactive 

Unknown (likely 

various) 

Typical 

systemic 

therapies for 

non-

metastatic 

disease 

(agents, 

route, 

and duration) 

Endocrine therapy (all 

patients): 

• Tamoxifen, letrozole, 

anastrozole, or 

exemestane 

• Oral therapy 

• 5-10 years 

 

Chemotherapy (some 

patients): 

• Adriamycin 

/cyclophosphamide (AC) 

• Adriamycin 

/cyclophosphamide/ 

paclitaxel (AC-T) 

• Docetaxel 

/cyclophosphamide (TC) 

• Intravenous therapy 

• 12-20 weeks 

Chemotherapy plus 

ERBB2-targeted therapy 

(all patients): 

• Paclitaxel/trastuzumab 

(TH) 

• Adriamycin/ 

cyclophosphamide/ 

paclitaxel/trastuzumab 

± pertuzumab (AC-TH±P) 

• Docetaxel /carboplatin 

/trastuzumab ± 

pertuzumab (TCH±P) 

• Intravenous therapy 

• 12-20 weeks of 

chemotherapy; 1 year of 

ERBB2-targeted therapy 

 

Endocrine therapy (only 

HR+) 

• Tamoxifen, letrozole, 

anastrozole, or 

exemestane 

• Oral therapy 

• 5-10 years 

Chemotherapy (all 

patients): 

• AC 

• AC-T 

• TC 

• Intravenous 

therapy 

• 12-20 weeks 

Table 2. Therapeutic options for the 3 breast cancer subtypes(Waks & Winer, 

2019). 
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2 Materials and Methods       

 

Cell lines 

 

JIMT-1 

The breast cancer cell line JIMT-1 (HER2-enriched, ER-, PR-, HER2+, ACC 589)(Leibniz 

Institute German Collection of Microorganisms and Cell Cultures, Germany) has been 

cultivated using Dulbecco’s Modified Eagle Media DMEM (Gibco Thermo Fisher 

Scientific, USA). The media was supplemented with 10% fetal bovine serum (Gibco 

Thermo Fisher Scientific, USA)  and 1% Penicillin-Streptomycin 10,000 U/ml (Gibco 

Thermo Fisher Scientific, USA). This adherent cell line was incubated on Heracell 150i 

(Thermo Fisher Scientific, USA) at 37°C in a humidified atmosphere containing 5% 

CO2 and passaged to a new flask containing fresh media every three to four days, 

depending on their concentration. 

 

MCF-7 

The breast cancer cell lines MCF-7 (Luminal A, ER+, PR+/-, HER2-, ACC 115)(Leibniz 

Institute German Collection of Microorganisms and Cell Cultures, Germany) has been 

cultivated using Dulbecco’s Modified Eagle Media DMEM (Gibco Thermo Fisher 

Scientific, USA). The media was supplemented with 10% fetal bovine serum (Gibco 

Thermo Fisher Scientific, USA)  and 1% Penicillin-Streptomycin 10,000 U/ml (Gibco 

Thermo Fisher Scientific, USA). This adherent cell line was incubated on Heracell 150i 

(Thermo Fisher Scientific, USA) at 37°C in a humidified atmosphere containing 5% 

CO2 and passaged to a new flask containing fresh media every three to four days, 

depending on their concentration. 
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Cell culture vessels 

 

Ibidi µ-Slide 4 Well ibiTreat. 

The open µ-Slide 4 Well Chip (Ibidi, Germany) has four independent wells and a tightly 

fitting lid (Figure 14)(Ibidi GmbH, n.d.-a). Each well has a working volume of 700 µL, 

and the total volume of the well is approximately 1000 µL without generating spillover. 

The ibiTreat is a physical surface modification that makes it hydrophilic and adhesive 

to virtually all cell types. Moreover, this surface allows analysis under perfusion 

conditions. 

 

Ibidi µ-Slide 4 Well Ph+ ibiTreat 

The open µ-Slide 4 Well Ph+ Chip (Ibidi, Germany) has four independent wells with 

an intermediate plate, it avoids meniscus formation and has a tightly fitting lid (Figure 

15)(Ibidi GmbH, n.d.-a). The chip is optimized for phase-contrast microscopy. Each 

well has a volume of 700 µL above the intermediate plate, and the total volume of the 

well is approximately 1000 µL without generating spillover. The ibiTreat is a physical 

surface modification that makes it hydrophilic and adhesive to virtually all cell types. 

Moreover, this surface allows analysis under perfusion conditions. 

Figure 14. Design of an Ibidi µ-Slide 4 Well chip(Ibidi GmbH, n.d.-a). 
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Cell culture 

 

JIMT-1 and MCF-7 cells were seeded on IBIDI µ-Slide 4 Well and IBIDI µ-Slide 4 Well 

Ph+ in sterile conditions. In the case of the IBIDI µ-Slide 4 well, 700 µL of the cell 

suspension at a concentration of 1x105 were applied to each well, the slide was 

covered and placed inside the Lionheart FX. Furthermore, regarding IBIDI µ-Slide 4 

Well Ph+, the procedure was similar but with the difference of injecting the cell 

suspension through one of the intermediate plate openings in the upper-right corner. 

Microscopes 

 

Zeiss Axio Observer Inverted  

The inverted microscope Zeiss Axio Observer (Zeiss, Germany) has been 

complemented with the Incubator P S compact (Pecon, Germany), the CO2 Module S 

(Pecon, Germany) and the Heating Device Humidity S (Pecon, Germany). This 

environmental chamber allows adjusting temperature to 37°C, CO2 levels to 5%, and 

humidity up to 80% (Figure 16)(MIAP, n.d.). Images were taken using magnification 

objectives Zeiss EC Plan-Neofluar 10x/0.3 and 40x/0.7. 

Figure 15. Design of an Ibidi µ-Slide 4 Well Ph+ chip(Ibidi 

GmbH, n.d.-a). 
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Lionheart Fx 

The automated microscope Lionheart Fx (BioTek, USA) is a compact (46.5 cm x 45.5 

cm x 35.8 cm), inclusive microscopy system for a broad range of imaging workflows. 

This device counts with an environmental control cover (Figure 17)(BioSPX, n.d.). The 

temperature was set at 37°C and the CO2 adjusted at 5%. Seven Petri dishes of 60 

Figure 16. Zeiss Axio Observer Inverted Microscope(MIAP, n.d.).  

Figure 17. Lionheart™ FX Automated Microscope(BioSPX, n.d.). 
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mm x 15 mm filled with water were placed inside the incubator to increase the 

humidity of the environment, up to 70% with an average of 58%. Images were taken 

using phase objective 20x Plan Fluorite WD 6.7 NA 0.45. 

 

Perfusion system 

 

Adox AcTIVA A22 Syringe Pump  

The Adox AcTIVA A22 Syringe Pump (Adox, Argentine) is a precise programmable 

syringe pump, and it has a communications port to connect to a computer (Figure 

18)(Adox, n.d.). 

 

Jecod DP-4 

The Jecod DP-4 (Jecod Co Ltd, China) is a programmable peristaltic aquarium pump 

with four channels (Figure 19)(Jecod, n.d.). 

 

Figure 18. The Adox AcTIVA A22 syringe 

pump(Adox, n.d.). 

Figure 19. The Jecod DP-4 peristaltic 

pump(Jecod, n.d.). 
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Live-imaging 

 

Perfused systems could be a complex system of tubing, connectors, device, and 

bubble trappers. Although most cell culture microdevices are for single-use, one may 

need to disconnect and connect tubing during experimentation. Accordingly, it is 

beneficial to prevent contamination to form the connections always in a sterile 

environment(Varma & Voldman, 2018). 

Moreover, the need for tracking by microscopy can become a stressor in 

microsystems. Naturally, most cells in vivo are not exposed to light. We do not have 

to forget that infrared radiations produce heat transference without contact, and 

heating cells over physiological conditions will lead to abnormal responses. This issue 

will increase when fluorescence microscopy is necessary. In order to overcome this 

situation, lower intensities of the light source, shorter exposure time, and the use of 

long excitation wavelengths in the case where fluorescence is needed must be 

promoted(Frigault et al., 2009; Magidson & Khodjakov, 2013; Varma & Voldman, 

2018). 

Additionally, following the manufacturer instructions, the recommended observation 

area has been done in a proper distance from the walls, comparable to the channel 

height(Ibidi GmbH, 2016). Three beacons equally distributed have been chosen to 

capture the images every 15 minutes (Figure 20) during six and four days for long-

term experiments and over two days for short-term experiments. 

Furthermore, after multiple observations to obtain image homogeneity, the intensity 

of the led was fixed at 10, integration time=100, and gain=7.9.  The focus strategy 

chosen was user-trainable autofocus. In this setting, the combination of manual 

B 
C 

1 2 3 
A 

Figure 20. Diagram of beacons on IBIDI µ-Slide 4 Well Ph+ chip(Ibidi 

GmbH, n.d.-a). The left well only contains media as evaporation control, the next 

one (1) is a cell culture in static conditions as a positive control of proliferation 

and the other two (2 and 3) run the assay on the conditions to test. 
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adjustment of the focus on a few sample wells and the correct height of bottom 

elevation is enough to train the system to select the best plane for imaging.  

Cell counting 

 

First, to recover the cells from the IBIDI µ-Slide 4 Well Ph+ chip, the media was 

removed manually using a pipet under sterile conditions. Next, washed twice with 700 

µL of PBS and immediately 350 µL of Trypsin-EDTA 0,25 % (Gibco Thermo Fisher 

Scientific, USA) was added. The chip was placed inside the incubator for over three 

minutes. Afterward, 350 µL of cDMEM was added to each well to stop trypsin and 

quickly proceed with trypan blue protocol for cell counting and viability assessing on 

the Bio-Rad TC10TM (Bio-Rad, USA) automated cell counter. The fold-change was 

calculated as “Average fc: Cell count f/Cell count i” where “Cell count i” is the 

concentration of the cell suspension at the initial state, and “Cell count f” is the 

concentration of Cells after trypsinization at the end of the experiment.  

 

Image Analysis 

 

Image series were analyzed applying a plugin from Fiji(Schindelin et al., 2012) named 

Trainable Weka Segmentation(Arganda-Carreras et al., 2017), and an algorithm 

developed by our colleague Dennis Raith(Raith, 2019) for adherent cells. The cell 

growth was calculated as the fold change applying the following equation: “Average 

Img fc: Area f/Area i” where “Area f” is the area covered by cells measured at the end 

of the experiment and “Area i” at the beginning. 

 

Trainable Weka Segmentation  

The Trainable Weka Segmentation is a Fiji(Schindelin et al., 2012) plugin that 

combines machine learning algorithms with a set of selected image features to 

produce pixel-based segmentation(Arganda-Carreras et al., 2017). A classifier model 

was trained with two classes, cell and background,  on default settings with a selection 
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of images obtained during the long-term experiments. Those images were selected 

with the following criteria: one image after two hours of seeding when the illumination 

is homogeneous on the sample and the cells are on suspension, one image where the 

cells are mostly attached at time = 8 hours and, one image at time = 48 hours where 

we can observe attached cells, debris and cells on division. Subsequently, a modified 

BeanShell script to apply the classifier to all images in a folder(ImageJ, n.d.) was 

applied. This script was modified to retrieve the measurement of the cell area in the 

segmented images of the dataset. The classifier model and the modified BeanShell 

are available, and both can be required by mail to the author. 

 

Deep Learning Algorithm 

A deep learning algorithm was developed by our colleague Dennis Raith to extract 

features from biological experiments(Raith, 2019). The dataset also was analyzed by 

him, retrieving measurements of the cell area. The algorithm was used as cited on 

“Exploration of Reinforcement Learning for Vision-based Automated Perfusion 

Systems” master thesis by Dennis Raith(Raith, 2019).  Those values were compared 

with the analysis achieved by the Trainable Weka Segmentation.  

 

Data Analysis and Visualization 

 

Data were annotated in Microsoft Excel (Microsoft, USA), further on analyzed and 

plotted using Prism (GraphPad Software Inc, USA). Statistical analysis was done on 

Prism (GraphPad Software Inc, USA). Linear or exponential fits were obtained using 

Prism (GraphPad Software Inc, USA). Fit accuracy is expressed as the coefficient of 

determination (R2). 
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3 Results and discussion       

Considering the experience earned in the application of microdevices for suspension 

cells(Olmos et al., 2020), this project employed adherent cells on commercial chips 

for practical reasons. The Lionheart Fx proved to be more suitable than Zeiss Axio 

Observer Inverted in our experiments for being more accurate for monitoring several 

positions. 

Ibidi µ-Slide 4 Well ibiTreat 

To achieve a setup not only distinguished by image quality but also for being coupled 

to a perfusion system commercial Ibidi µ-Slide 4 Well ibiTreat chips were tested. Two 

strategies have been applied to connect the chip. On the first approach, inlet and 

outlet were drilled on the superior lid. Consecutively, the outlet was modified, and the 

lateral wall was drilled in order to maintain a certain level of media on the well (Figure 

21). In both cases, always under sterile conditions.   

Finally, the microdevice was connected with stainless steel catheter couplers 22ga x 

15mm (Instech Laboratories Inc, USA) through PU tubing, medical-grade, 3Fr, 

0.025x.040in (Instech Laboratories Inc, USA). The Adox AcTIVA A22 Syringe Pump 

was employed to infuse the new media. A syringe Injeckt (B.Braun, Germany) of the 

necessary volume of media for the whole experiment plus a Luer stub, 22ga x 0.25in 

(Instech Laboratories Inc, USA) were necessary to connect to the chip appropriately. 

On the other hand, the peristaltic pump Jecod DP-4 was utilized for draining the old 

media. The old media was collected in a falcon tube due to a microfluidic lid adapter 

(Elveflow, France) to assure cells are not being drained. However, meniscus formation 

on the chip impairs control of the total volume generating whether spillover or dry of 

the well. For this reason, this device is not suitable for our objectives. 

Figure 21. Strategies to perfuse the Ibidi µ-Slide 4 Well chip. The green 

arrows indicate the steel couplers and the flow of the media. In this diagram is 

possible to detect the meniscus formation. The black arrows shows the perturbing 

effect of the meniscus on the light path(Ibidi GmbH, n.d.-a). 
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Ibidi µ-Slide 4 Well Ph+ ibiTreat 

Fortunately, Ibidi has developed an option. The Ibidi µ-Slide 4 Well Ph+ chip avoids 

meniscus formation and its optimized for phase contrast microscopy(Ibidi GmbH, n.d.-

a).  

Long-term live-cell imaging has been performed for a period of up to six days in static 

conditions to asses cellular growth at standard conditions of temperature, humidity, 

and CO2 on Lionheart FX (Figure 22). Static conditions mean that the media was 

renewed every two days manually. The protocol of adherent cell count was 

implemented, but we were unable to perform image analysis due to the high 

confluence at the endpoint, ratifying the necessity of briefer experiments. The 

observation of the time-lapses confirmed the requirement of experiments shorter than 

108 hours. The experiment was repeated over four days. In parallel, we tested the 

cellular growth inside a traditional incubator with a humidity of 99%. A significant 

difference has been found on the values for cell count but not for viability (Figure 23), 

Welch´s t-test has been performed on GraphPad Prism retrieving a p value=0.0149 

and an r2=0.8670, which expose the importance of the humidity levels on cell growth. 

Intending to maximize the number of experiments without overlooking the objectives 

and keeping in mind that the overall doubling time for the cell lines chosen is between 

Figure 22. Long-term cell culture of JIMT-1 at static conditions on IBIDI µ-Slide 4 

Well Ph+ chip in Lionheart FX. After six days of cell culture with manual renewal of 

media the JIMT-1 cell line almost sextuplicate the cell number and maintain a viability close 

to 90%. 
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30 and 40 hours, the extension of the perfused experiments has been set to 48 hours 

since cells are seeded. 

Like previous experiments, the Adox AcTIVA A22 Syringe Pump was employed to 

infuse the media, and the auto dosing pump Jecod DP-4 was utilized for draining the 

old media. This novel device has an intermediate plate with a volume of 700 µL below 

it and allows us to adjust the total volume at that height.  

The lid of the µ-Slide 4 Well Ph+ Chip was drilled under laminar flow in two of the 

wells, twice times. The inlet is located in one of the corners matching with the opening 

of the intermediate plate. The outlet is on the opposite side but in the middle over the 

area of the intermediate plate. The purpose is draining only the media above the 

intermediate plate (Figure 24). Afterward, three of the wells were filled with 700 µL 

of each cell line suspension at a concentration of 1x105 cells/ml using a standard pipet 

in sterile conditions through the opening near the corner. The device was transported 

inside a petri dish and placed inside the Lionheart FX at 37°C, 5% CO2. 

Immediately, the two drilled wells will be carefully connected with right-angle 

stainless-steel couplers 22ga x 15mm (Instech Laboratories Inc, USA) through PU 

tubing, medical-grade, 3Fr, 0.025x.040in (Instech Laboratories Inc, USA). The Adox 

AcTIVA A22 Syringe Pump was employed to infuse the new media. A syringe Injeckt 

Figure 23. Long-term cell culture of JIMT-1 at static conditions on IBIDI µ-Slide 4 

Well Ph+ chip in Incubator vs Lionheart FX. After four days of cell culture with manual 

renewal of media we can detect that the JIMT-1 cell line grown better on the Hercell 150i 

incubator, but the viability is not compromised on Lionheart FX.  
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(B.Braun, Germany) of the necessary volume of media for the whole experiment plus 

a Luer stub, 22ga x 0.25in (Instech Laboratories Inc, USA) were necessary to connect 

to the chip appropriately. On the other hand, the peristaltic pump Jecod DP-4 was 

utilized for draining the old media. The old media was collected in a falcon tube due 

to a microfluidic lid adapter (Elveflow, France) to assure cells are not being drained 

(Figure 25)(Adox, n.d.; Cole-Parmer Germany, n.d.; Elveflow, n.d.-a; Ibidi GmbH, 

n.d.-a). The third well with cells will be used as a static culture control and the last 

one, with just media, as an evaporation control.  

Several aspects should be considered in order to maintain healthy cells. Therefore, 

our system was developed to avoid bubble formation. It can produce membrane 

damage and necrosis(Varma & Voldman, 2018). The levels of humidity and CO2 were 

monitored with averages of 58% and 5%, respectively. These values could be reached 

with the introduction of seven Petri dishes of 60 mm filled with water. 

Another thing to keep in mind is the shear stress produced in the device. It must not 

exceed physiological values because morphology, distribution, or viability could be 

altered(Ludwig et al., 1992; Shemesh et al., 2015; Tanzeglock et al., 2009; Varma & 

Voldman, 2018). Although we did not perform a simulation of shear stress, considering 

Figure 24. Modified Ibidi µ-Slide 4 Well Ph+ chip. Two gaps were made on the lid of 

commercial Ibidi chips in order to connect steel couplers as inlet and outlet. When it is 

connected, the inlet is in contact with the culture media, but the outlet only reaches the 

intermediate plate. The black arrows represent the light path optimized for phase contrast 

(Modified from Ibidi website)(Ibidi GmbH, n.d.-a). 
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available material from the Ibidi website, it is possible to estimate the impact. 

Similarly, the μ-Slide I Luer family chips (Figure 26) is characterized by a single 

channel, offered in different heights(Ibidi GmbH, 2016). The shear stress in a 

rectangular channel is defined by the formula: τ = η x Factor (dependent on Slide) x 

Φ where, τ = shear stress, η = dynamical viscosity, Φ = flow rate.  
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The dynamical viscosity of DMEM with 10% serum is approximately 0.0072 dyn.s/cm2 

at 37°C and 0.0105 dyn.s/cm2 at 20°C. On the other hand, a factor of 34.23 was 

calculated by exponential regression for the µ-Slide 4 Well Ph+ with a channel height 

of 3.0 mm (Figure 27)(Hinderliter et al., 2010; Ibidi GmbH, 2016). Considering the 

highest flow rate on the perfusion strategies (200 µL/min) is estimated between 0.005 

N/m2 and 0.007 N/m2 of flow shear stress for temperatures among 20°C and 37°C.  

This value is much lower than the necessary, around 0.25 N/m2, to generate a 

significant alteration in morphology and viability in mammalian cells(Ludwig et al., 

1992). Besides, there is a tendency of cancer cells to exhibit a biologically enhanced 

 
Figure 27. Exponential fit of the factor value employing the available data of the 

Ibidi μ-Slide I Luer family chips(Ibidi GmbH, 2016). The family of μ-Slide I Luer chip is 

identified with a single channel of diverse height. Making use of the available data, it is 

possible to approximate the factor on the µ-Slide 4 Well Ph+ Chip to calculate the shear 

stress. 

Figure 26. Design of the Ibidi μ-Slide I Luer chip(Ibidi GmbH, n.d.-a). 
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capacity to resist fluid shear stress (Barnes et al., 2012). Even though the dimensions 

of our device are on the edge of microfluidics, we can assume robust perfused cell 

culture for live-cell imaging. 

The imaging process starts immediately after cell seeding. Therefore, cells are in 

suspension. In consequence, the focus training has been made with samples properly 

attached to improve the tracking.  Nevertheless, eleven focus stacking or Z-stacks, 

five from above, and five from over the focus height have been set. In this way, we 

assure the quality of the imaging at each time point.  

Regarding the perfusion settings, pumps were configurated to have a starting delay 

of 8 hours, allowing attachment of cells. The schedule starts on the infusion phase, 

and the delay prevents cells from getting flushed away. 

Several cellular events can be observed with the system, from cell mobility to cell 

division. As an example, we can observe them in this time-lapse composite of images 

(Figures 28 and 29). Usually, in these conditions, the changes in the shape of cells to 

rounded means cell division. The system enables one to follow single cells, and it is 

possible to detect cytokinesis, where the daughter cell is detached and later starts to 

interact with other cells to get attached.  However, early apoptosis is also 

characterized by cell rounding due to shrinkage and cytoplasm condensation(Elmore, 

2007). Further experiments should be done to image cell death. Some authors suggest 

adding a low concentration (0.25 μg/ml) of the DNA intercalating fluorescent dye 

propidium iodide. Nevertheless, we aim to evaluate the cellular growth without 

fluorochrome interferences and avoiding the possible phototoxicity produced by the 

lasers.  

The cell line JIMT-1 has proved to be a better model than MCF-7 to evaluate the cell 

behavior in our system. MCF-7 tent to form clusters that not only tricky the focus 

stabilization since a higher number of signals on different planes are detected but also 

because the number of clusters can modify the cellular growth. At the same time, the 

JIMT-1 deploys a monolayer of cells. 
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Figure 28. JIMT-1 cellular events on perfused IBIDI µ-Slide 4 Well Ph+ chip 

at 20X. In this brief brightfield time-lapse image sequence it is possible to observe 

several cellular events as cell division and cell dynamism. 
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Figure 29. JIMT-1 cellular events on perfused IBIDI µ-Slide 4 Well Ph+ chip 

at 20X. In this brief brightfield time-lapse image sequence it is possible to observe 

several cellular events as cell division and cell dynamism. 
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Finally, to analyze the results of the perfused experiments under different strategies, 

the traditional protocol of adherent cell counting has been applied at the endpoint. 

The Bio-Rad TC10 automated cell counter has been considered as the standard 

method(Hsiung et al., 2013).  Besides, the cell counter feature of the Deep Learning 

algorithm on the image data was performed by Dennis Raith(Raith, 2019). For the 

image analysis, images at t=8h where the cells are almost mostly attached have been 

considered as initial state and images at t=48h as the final state. As we mentioned 

before, three beacons have been defined per well. The average of the difference 

between the initial and final state of each beacon describes the respective well. A 

dissimilar tendency has been observed between both methods. The standard method 

supports the evidence of a periodic fast media pulse (P1) as the recommended 

strategy for homogeneous cell culture(Giulitti et al., 2013), manifested in this case as 

the maximal cell growth (Figure 30). However, no significant differences have been 

found in the statistical analysis on the TC10 results, between the perfusion strategies 

in a two-way ANOVA with multiple comparisons tests. On the other hand, the 

differences between both methods can be attributable to the necessity of training 

improvement on the Deep Learning algorithm (Figure 31). 

Figure 30. Periodic fast media pulse (P1) achieved the maximal amount of cell 

number. The JIMT-1 cell count fold change in perfused conditions at IBIDI µ-Slide 4 Well 

Ph+ chip has shown the periodic fast media pulse as preferred in terms of cell count after 

48 hours on Lionheart FX considering TC10 Automated Cell Counter as standard method.  
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Figure 31. Example of Deep Learning algorithm cell count performance on JIMT-1 

image data. Underestimation (Red) and overestimation (Blue). 
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Furthermore, we also compared the viability under the different perfusion schedules. 

Non-significant differences have been detected with Welch's unequal variances t-test 

(Figure 32), but P1 obtained the lowest percentage of viability. This tendency could 

be partially explained with the lowest periodicity of the media renewal, where the dead 

cells are washed out. However, further experiments must be done to claim a relevant 

difference in cell health. It needs clarifying that the old media was always reviewed in 

all the conditions without finding a detectable amount of cells (lower than 5x104 

cells/mL).  

 

In the end, exploring the relationship between area and cell count, we also performed 

segmentation-based analysis(X. Chen & Yu, 2001). Image segmentation is also critical 

to image processing, tracking, and pattern recognition(Cheng et al., 2001). The image 

data have been analyzed to measure the area occupied by cells with the Fiji plugin 

Trainable Weka Segmentation(Arganda-Carreras et al., 2017) and also by Dennis 

Raith(Raith, 2019) with the Deep Learning algorithm (Figure 33). Similarly, images at 

t=8h where cells are predominant attached have been considered as initial state and 

images at t=48h as the final state. The average of the difference between the initial 

and final state of each beacon describes the respective well.  

In this case, there is not a standard method identified. Trainable Weka segmentation 

can be considered as the most widely used for his character of open source. However, 
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Figure 32. JIMT-1 viability in perfused conditions at IBIDI µ-Slide 4 Well Ph+ chip 

after 2 days on Lionheart FX. 
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we want to point out that the Deep Learning algorithm measurements showed the 

same tendency as described before on the cell count analysis and previous works 

where P1 was the favorite(Giulitti et al., 2013). It is worth noting that the cell count 

by the TC10 automatic cell counter, unlike the other methods tested at this work, is a 

validated method.  

For those reasons, segmented images of both methods have been reviewed (Figure 

34 and 35). The Weka Trainable segmentation performance seems to be the most 

imprecise in terms of inaccuracy on borders and whole-cell recognition. 

However, in order to obtain more reliable results, parameters as the number of 

beacons that could not be appropriated considering the size of the well should be 

necessary to be established experimentally. On top of this, improving the amount and 

quality of data used for training can enhance the performance of the methods. Machine 

learning algorithms can be trained even to recognize cell death patterns from the 

brightfield image with the proper training. As an example, changes in the eccentricity 

of cells can prove apoptotic processes(Kotyk et al., n.d.; Larson & Banks, 2014). 

Figure 33. Deep Learning Algorithm segmentation-based analysis fits with the 

observed results on standard methods of cell counting. In this graph we can observe 

the same tendency of the deep learning algorithm area measurement as we observed 

before with the standard method of cell count. In that case, periodic fast media pulse (P1) 

achieved the maximal amount of cell number with the validated method of cell counting 

(Fig. 30).  
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Figure 34. Example of Deep Learning algorithm segmentation performance on 

JIMT-1 image data. Underestimation (Red) and overestimation (Blue). 
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Figure 35. Example of Trainable Weka segmentation performance on JIMT-1 

image data. Underestimation (White) and overestimation (Blue). 
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4 Conclusions           

In summary, we developed an accessible and automated perfused system that enables 

live imaging of cells over more extended periods than found in literature, where 

usually long-term was considered as experiments no longer than one day(Babic et al., 

2018). However, different cell lines could have different behaviors; that is why it is 

necessary to adjust the setup for each situation. Additionally, the aim of the assay 

plays a vital role. All the variables must be analyzed and controlled in order to optimize 

the setup for robust results. 

As previous works on the topic of perfused systems(Giulitti et al., 2013), the fast-

media pulse has a clear tendency to be more appropriate for media delivery. 

Nevertheless, these differences are not statistically significant; that is why it is 

necessary to repeat more experiments to assure this tendency.  

The system has shown to be more robust than conventional available microfluidic 

systems. While differences were present between the different conditions, they were 

not meaningful, and the system was not easily affected by minor changes in the 

perfusion. 

The automation on the perfusion reduces human intervention, hence reducing the 

probabilities of failure by mismanagement, demonstrating the potential of the system 

to tackle reproducibility issues.  

The live-cell imaging feature allows us to analyze cell growth in real-time. We are 

expanding in innumerable ways the relevance of the system. With the proper amount 

of data, it will be possible to predict the output of the experiment in earlier times. 

Looking further into the future, the system could be applied to simulate the pulse on 

endothelium cells of blood vessels, renal epithelial cells, or even reproducing 

metronomic chemotherapy schedules. 
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