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Abstract

This study investigates the spatial heterogeneity of the Rotterdam housing

market, as well as the spatial scale at which the processes that explain housing

prices operate. I use data on 3632 residential properties that were sold in Rotter-

dam in 2018 provided by the NVM. Using a recently (2017) developed technique

called Multiscale Geographically Weighted Regression (MGWR), I show that

certain factors explaining residential housing prices operate on different spatial

scales, indicating the existence of relatively local and more global effects. Lot

size and the state of maintenance of the house exterior seem to operate on a local

scale, whereas the degree of isolation and number of rooms appear to be global.

Comparison of the MGWR model with a regular GWR with fixed bandwidths

and a global hedonic model with location fixed effects, show that the MGWR

best fits the data, i.e. a model that allows the bandwidths to vary for each

parameter outperforms the models that do not allow this.
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to extend my gratitude to the following individuals: Nicola Cortinovis, for introducing me to spatial

economics and for his considerate supervision and feedback; Jeroen van Haaren, for providing me with

the data and for additional insights in the Rotterdam housing market; Taylor Oshan, for his time and

helpful comments on circumventing technical constraints in the modelling environment; last but not

least, to my friends Marc Boef and Scott Reuvers for sparring with me on programming matters and

for their loyal company in the university library.
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1 Introduction

Real estate valuation dates back to at least the Roman civilization (Matthews, 1921),

and unlike some of the objects under valuation, the appraisal criteria seem to have

withstood the test of time. The ancient Greeks already established the importance

of size and location, as larger houses closer to the agora appeared to yield a higher

return than their smaller and more remote counterparts (Nevett, 2000). Although it

is unclear what methods they employed, a property’s location today is as relevant to

its price as it was then. However, despite the advancements of computational software

for real estate appraisal (McCluskey, McCord, Davis, Haran & McIlhatton, 2013),

location is not always properly modelled. In the often used sales comparison approach

(Kettani & Oral, 2015), where the value of the subject property is assumed to bear

close resemblance to the selling prices of similar properties in its vicinity, location is

not always quantified because it is assumed that experts possess sufficient knowledge

on the location (Wyatt, 1997). These experts’ judgment may be subjective and less

than perfect (Ramsland & Markham, 1998; Yeh & Hsu, 2018). A more quantitative

and objective approach is the hedonic pricing model, which lacks the human bias and

is more suitable for (mass) appraisal, or as a benchmark for other models (Yeh &

Hsu, 2018). In hedonic applications the house price is assumed to be a function of the

implicit value of the houses’ characteristics, sometimes further divided in categories

like structural, accessibility, or neighbourhood characteristics (Fik et al. 2003). Even

though hedonic regression models are better able to incorporate the locational (or

spatial) effect, oftentimes through regional fixed effects dummies, they are not able to

perfectly capture the spatial heterogeneity that is inherent in housing markets (Helbich,

Brunauer, Vaz, & Nijkamp, 2014). This is because the strong spatial patterns in the

supply of specific housing characteristics in metropolitan areas do not always obey the

boundaries that location dummies impose.

To better capture the spatial patterns that emerge, we can resort to non-parametric

models such as geographically weighted regression (GWR), where the nature of the

parameters is dependent on the data and not fixed beforehand. However, even in

GWR the same spatial scale is used for all the parameters (e.g. McMillen & Redfearn,

2010), while it is very well possible that some factors explaining house prices operate
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on a different spatial scale than others. For instance, the presence of gardens in nearby

houses may provide positive spillovers for the object under sale, while gardens that are

further away from the object under sale are less likely to affect the price. There still

is a scarcity in the literature with regards to the geographic scale over which different

economic processes operate, including those processes that govern real estate prices

(Fotheringham, Yang, & Kang, 2017). In fact, Helbich et al. (2014) state that there is

no empirical consensus as to which factors can be considered local (i.e. operating on a

relatively small scale) and which global.

The aim of this study is to investigate these scales, i.e. the spatial scales at which

processes operate in the determination of housing prices. Researching this is important

because GWR results in biased estimates and potentially not justified conclusions

if applied to data with different scales (Wei & Qi, 2012). Furthermore, it provides

insights in processes that throughout the literature are nearly always assumed to be

on the same scale. To demonstrate the spatial heterogeneity a recently developed

method called Multiscale Geographically Weighted Regression (MGWR) is employed.

Regular GWR uses a locational attribute in observations to perform a set of n localized

regressions, where n indicates the number of observations. In calibrating a GWR

model, the optimal bandwidth, measured as distance or k number of nearest neighbours

(KNN), is derived. This KNN is the sample size for each localized regression. MGWR

adds to this framework by relaxing the assumption that all processes operate at the

same scale, i.e. the bandwidth, or sample size, is allowed to vary for each parameter

(Fotheringham et al., 2017). This provides insights into the different process scales

that may be present over space. The data set used for the analysis was provided by

the Nederlandse Vereniging van Makelaars (NVM), and includes 3632 observations of

house transactions in the city of Rotterdam in 2018. The research questions are as

follows:

What is the degree of spatial heterogeneity in the Rotterdam housing market? Are

there differences with regards to the spatial scale at which processes explaining housing

prices operate?

In this study the performance of the MGWR is benchmarked against a hedonic
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model with locational fixed effects, and a regular GWR model, to explore the potential

improvement in accuracy when the spatial scales are correctly specified. The further

structure of this paper is as follows. First, in Section 2, the literature with regards

to spatial analysis and the econometric issues that may occur in spatial datasets is

reviewed, in particular the issues of spatial dependence and heterogeneity. Here we

will also discuss previous applications of the (M)GWR model in the literature. Sec-

tion 3 introduces the data set, which is obtained from the Nederlandse Vereniging van

Makelaars en Taxateurs in onroerende goederen (NVM), the collective organisation for

real estate agents in the Dutch housing market. We also rationalize the data transfor-

mation process that is required for proper calibration of a (M)GWR model. Section

4 introduces the MGWR model, and sheds more light on the bandwidth optimization

method. Here we also discuss the kernel function that is used for assigning weights

to each observation in the local regressions. Finally, the full results are presented in

Section 5, after which a discussion of the limitations and implications occurs in Section

6. One of the major findings of this study is that the variables seem to operate on dif-

ferent spatial scales, i.e. when the number of nearest neighbours included in each local

regression is allowed to vary for each parameter, the model fit is highest. This implies

that spatial dependence and heterogeneity in data can not simply be captured using

locational fixed effects, because fixed effects (and global models in general) assume the

same spatial scale for each parameter.

2 Review of Literature

2.1 Spatial Dependence and Spatial Heterogeneity

As mentioned in the introduction, spatial issues are not always correctly addressed in

hedonic (real estate) applications. This can be attributed to the presence of spatial

dependence and spatial heterogeneity in data, respectively also referred to as second

order and first order variation of spatial processes. With spatial dependence, input

variables or the respondent variable may be affected by values in a neighboring region.

It is likely to occur in housing data sets because nearby properties often show similar

structural features and have access to the same amenities, and thus are likely to be
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spatially dependent (Basu & Thibodeau, 1998; Bourassa et al., 2010). The assumption

of independence in the context of OLS is therefore not likely to be valid. Regions may

be correlated with neighbors in one of three ways: 1) The value of y in a region might

be correlated with the value of y in a neighboring region (lag y); 2) The value of Xs

in a region might be correlated with the value of y in a neighboring region (lag X);

3) The residuals ε might be related to the residuals in a neighboring region (spatial

autocorrelation). The Manski model, also referred to as the general nesting spatial

model (Elhorst, 2014), incorporates all three types of correlation in one model:

y = ρWy + αιN +Xβ +WXθ + υ (1)

υ = λWυ + ε (2)

In this model, ρ is some multiplier, generally <1, Wy are the neighboring values of

y, X is y’s own vector of independent variables, WX indicate the neighboring values

of X multiplied by θ, which is a vector of a lot of different slope parameters. υ is the

unexplained variation, which is a function of the neighbor’s unexplained variation + ε,

the error term.

The Manski model in Equation 1 is however not properly equipped to deal with

the other concern in spatial models, which is spatial heterogeneity. Although it ac-

counts for potential spatial autocorrelation in data through spatial lags, the model

creates parameters that represent an average of the parameter over all locations (this

is what we refer to as a stationary coefficient model). Stationary coefficient models

should not be applied to analyses of housing prices, because the supply of specific

housing characteristics often demonstrates strong spatial patterns in urban areas, and

the relationship between explanatory variables and the output variable may therefore

differ substantially over regions (Bitter et al., 2007). This can be demonstrated as

follows: When household preferences for specific housing characteristics and locational

attributes change, this could result in spatial disequilibrium of supply and demand.

Greater competition for housing attributes in a specific area should result in higher
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marginal prices, which in turn may result in spatial heterogeneity. Following this logic,

the following hypothesis is derived to explore the extent of spatial heterogeneity Rot-

terdam:

Hypothesis 1 : The relationship between the respondent and explanatory variables

is not constant over space, i.e. there is spatial heterogeneity in the Rotterdam housing

market.

Spatial heterogeneity can be modelled in both a discrete and a continuous man-

ner. For the discrete approach we implement predefined spatial units in the model,

as some sort of location fixed effects. The underlying assumption here is that the

spatial range of the unobserved heterogeneity or dependence neatly follows the bor-

ders of the spatial unit. In practice, this assumption does not often hold, as omitted

neighborhood variables are often of a more complex nature, meaning that the resid-

ual spatial autocorrelation can not fully be removed using a fixed-effects approach

(Anselin & Lozano-Gracia, 2009). The continuous method does not rely on exogenous

assumptions, but rather on a locational attribute, such as a coordinate reference, that

is present in each observation. It is therefore better suited to deal with data in which

spatial heterogeneity is likely to be present. One method that addresses both spatial

dependence and uses a continuous approach to model spatial heterogeneity is the spa-

tial expansion method, which allows parameters to drift based on their location, in an

OLS framework (Cassetti, 1972). This is done through interaction of the house charac-

teristics or attributes and the locational variables. However, in a fairly recent study on

the Tucson, Arizona housing market, the spatial expansion method is outperformed by

another method (Bitter et al., 2007), the geographically weighted regression (GWR),

which will be thoroughly discussed in the next section.

2.2 (Multiscale) Geographically Weighted Regression

The GWR allows unique coefficients to be estimated at each location (i.e. a sale point),

so it essentially specifies separate regression models for each point of observation. The

sample size for the local regressions is referred to as the bandwidth. Each observation

within the bandwidth has a weight that is adjusted based on their distance to a specific
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sale point (i.e. the house under observation), where closer observations are assigned

a larger weight. This is further explained in the Methodology section of this paper.

Not only does GWR identify spatial heterogeneity in processes and take advantage

of spatial dependence in data (Fotheringham et al., 2017), it also does so better than

other methods, such as the spatial expansion method mentioned in Section 2.1. Another

comparison of GWR was carried out by McCluskey et al. (2013), who compared the

prediction accuracy of several mass appraisal methods. Their measures for relative

performance of the models are based on the ease with which a model can be explained,

the consistency of the model structure, transparency of the output, and the explicitness

of the locational element. The study shows that geostatistical localised regression, or

GWR as we call it, is superior in terms of reliability, accuracy and explanation, with an

artificial neural network (ANN) model following in close pursuit. A study by Farber

& Yates (2006) on the Canadian housing market also shows strong support for the

superiority of this model, and provides evidence for spatial heterogeneity in several

housing attributes. Because of this superiority, the GWR model is used in this research

as the standard for estimating the value of a property. In line with Yeh & Hsu (2018),

the hedonic pricing model is used as a benchmark against which the performance can

be measured.

The single optimal bandwidth that is derived in a GWR can be regarded as a

weighted average of the different scales of spatial heterogeneity, where the weighting

is assigned based on the explanatory power of each relationship in the local model.

This is an apparent shortcoming of GWR, as it can lead to misspecification errors

and biased parameter estimates if it is applied to data where multiple spatial scales

are at work in the background. This is one of the main advantages of using MGWR

instead. MGWR is a type of GWR that does not have the strict assumption that

all processes operate at the same scale. In other words, a MGWR model allows the

sample size for the localized regressions to differ per variable. It is suggested to be used

as the standard model in any analysis where GWR would also be applicable (Oshan

et al., 2019). As this method has only recently been developed, it has not yet been

applied to the real estate market and could therefore provide some very interesting

and novel insights. There is one notable contribution with regards to different spatial
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scales in the literature, belonging to Helbich et al. (2014). In an attempt to account for

the difference between global and local processes, they employ a mixed geographically

weighted regression to the Austrian housing market. The model is called mixed in the

sense that some of the coefficients are spatially fixed (because of a suspected global

process occurring), whereas a number of local processes are allowed to vary spatially,

albeit all at the same bandwidth. The mixed GWR provides evidence for significant

spatial variation for some of the covariates, whereas policy-based linkages and economic

interconnectedness of the housing market are demonstrated in the global effects. The

authors of this work rightfully state that there is no empirical consensus on which

predictors enter the model globally and which locally. Since no literature is available

on the spatial scales of variables, we will use logic to derive the hypotheses.

The following variables are expected to operate on a local scale1: a) MAINTOUT

(the state of maintenance of the house exterior), because it can be argued that the state

of surrounding houses can impact the price of a house. Houses in the direct vicinity that

are well maintained will probably positively affect the object’s sales price, whereas well-

maintained houses that are not nearby are not likely to affect the price. b) GARDEN

(binary variable) is likely to affect the house price in a similar fashion, as the presence

of gardens in a neighbourhood is likely to generate positive spill-overs for other houses

because of the added space and green in between houses.2 c) Building period (BP) can

be correlated to the aesthetics of the house, and therefore might generate positive (or

negative) spill-overs in a similar manner to GARDEN. In summary, the variables that

are expected to be local all have to do with features that can be observed in the direct

vicinity of the house, and could therefore generate spill-overs of some sort.

For the following variables we can make the case that they are likely to operate

on a global scale: a) M2 (the lot size in squared meters), as buyers can reasonably

compare houses of similar sizes in several neighbourhoods, not necessarily close or

adjacent. I.e., it can be reasoned that individuals looking for a house will beforehand

have certain expectations or desires with regards to the lot size. b) CEILING (the

height of the ceiling in meters) follows the same logic, if potential buyers are looking for

1For a full overview of the variables and their description see Appendix A1.
2Note that this variable refers to private gardens and not public green spaces.
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a house with specific dimensions they can reasonably be expected to do so over different

areas. c) ISOL (the degree of isolation in a house). Although this is probably strongly

correlated with the building period of a house, house owners can -depending on their

preference or expected utility- go through great lengths to acquire decent or sustainable

isolation. Potential buyers can -based on the same preferences- decide to compare

houses with similar degrees of isolation over larger distances. Variables nROOMS,

CAT, and nFLOORS follow similar strains of reasoning as M2 and CEILING and are

therefore expected to be global. The above expectations are expressed in the following

hypothesis:

Hypothesis 2 : The optimal bandwidth (k number of nearest neighbours) is not the

same for all parameters, i.e. some processes are local whereas others are global.

3 Data

3.1 NVM Transaction Data

The data for this research is provided by the Nederlandse Vereniging voor Makelaars

(NVM), which is the collective organization for real estate brokers and appraisers in

the Netherlands. According to their website, an approximate 75% of Dutch houses

is sold by real estate brokers belonging to this organization. Every house transaction

that is overseen by a member of this organization is added to the database, along

with an assessment of the different characteristics of properties and the transaction

prices. Using QGIS software and the CBS Wijk- en Buurtkaart 2018 data we add

the neighbourhood that each observation is in, to be able to control for locational

fixed effects in the global hedonic model that is used as a benchmark. We can either

include this category with around 15 factors or with around 65 factors. In line with

Bourassa et al. (2010), who state that increasing the number of submarkets tends to

improve the results, the latter option is chosen. Because of the intensive computational

requirements of the MGWR model, the data set is reduced to only include houses sold

in 2018 in Rotterdam, a major port city in the Randstad area of the Netherlands with

a population of 620,000 inhabitants. This results in a total of 3719 observations. For
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Figure 1: Mean Transaction Price (in e) per Neighbourhood in Rotterdam

the purpose of this exploratory research, i.e. to determine if there are differences in the

spatial scales over which valuation processes operate, this sample should be sufficient.

3.2 Variables and the Modeling Environment

The dependent variable is transaction price, which shows a substantial amount of vari-

ation across the city (Figure 1). It must be noted that the amount of observations n

differs substantially per neighbourhood, and the figure should not be interpreted as an

accurate representation of the average value of houses. Its sole purpose is to illustrate

the spatial variation. An overview of the included variables can be found in Table

A1. To correct for potential skewing, the dependent variable underwent a logarithmic

transformation. Variables to do with a house’s structure are the lot size (M2 ), the

height of the ceiling (Ceiling), state of interior and exterior maintenance (MaintIn and

MaintOut, the degree of isolation (Isol), the number of floors (nFloors), number of

rooms(nRooms), and presence of a garden (Garden). Also included are variables indi-

cating whether the unit under observation is a house or apartment (CAT ), the building

period (BP), locational aspects (LOC ), and the neighbourhood each observation is in

as a fixed effect (NBH ).

As the NVM dataset only includes the Postal Code and Address as locational at-

tributes, the data had to be further prepared for use in a MGWR model. More specif-

ically, using the abovementioned locational attributes all observations were geocoded
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Table 1: Descriptive Statistics

Mean Std. Dev. Min. Max.

Transaction price 314,595 213,093 51,000 2,900,000

M2 106.79 46.18 27.0 517.0

CEILING 3.01 0.34 2.10 5.86

MAINTIN 6.77 1.18 1 9

MAINTOUT 6.89 0.90 1 9

ISOL 1.91 1.73 0 5

nFLOORS 1.87 0.95 1 6

nROOMS 3.98 1.52 1 16

GARDEN 0.34 0.47 0 1

CAT 0.68 0.47 0 1

BP1 0.39 0.49 0 1

BP2 0.27 0.44 0 1

LOC2 0.15 0.35 0 1

LOC4 0.17 0.38 0 1

to longitude / latitude coordinates using an external API. Furthermore, a number of

observations that indicated a lot size of 0 squared meters were dropped, as they are

likely to be errors and will obscure the results. This left a total number of observations

of 3632. Also, because MGWR does not allow for inclusion or interpretation of nominal

categorical variables, BP, LOC and NBH were one hot encoded to perform binariza-

tion of these categories. The categorical variables with a natural ordinal relationship

(e.g. MaintIn and Isol) are treated as continuous, and therefore one hot encoding is

not required. Finally, for the MGWR model, both the continuous X variables and

the Y variable are standardized so they are centered at zero, and are based on the

same range of variation. This allows for comparison of each of the bandwidths that is

obtained (Oshan et al., 2019).
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4 Methodology

The MGWR module provides parameter estimates for the global (OLS) and local

(GWR / MGWR) hedonic house price models. Both will be briefly introduced in this

section.

4.1 Global Hedonic Model

In a hedonic price function, housing price is expressed as a function of a number of

housing characteristics. In the results section of this paper the Ordinary Least Squares

(OLS) model is referred to as the global hedonic model (GHM), because each coefficient

is assumed to operate at the scale of the entire data set. Although previous works have

already demonstrated the superiority of GWR as compared to global models (Farber

& Yates, 2006; Bitter et al., 2007; McCluskey et al., 2013), the GHM is included here

so we can interpret the results of the local models relative to the global model. See

below the GHM in formula,

yi = β0 +
m∑
k=0

βkxik + εi (3)

where xik can be read as the ith observation of the kth independent variable. Note

that a locational element is not yet explicitly present in the observations, location is

only incorporated in the global hedonic model in the form of a fixed-effects dummy of

the neighbourhood, and is thus part of the vector xik. The GWR model itself is rather

similar to the above model, except for the fact that it performs parameter estimation

at each observation point, as is demonstrated in the next section.

4.2 (M)GWR

4.2.1 GWR & Spatial Weights Matrix

Whereas the GHM offers the same set of coefficients for all observations over a geo-

graphical area, the Geographically Weighted Regression (GWR) produces a separate
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regression, and therefore a separate set of coefficients, for each of the observations.

Each of these local regressions only incorporates those neighbours that are within the

obtained bandwidth. The optimal bandwidth is selected by optimizing a model fit

criterion, such as the R2 or the corrected Akaike Information Criterion (AICc). The

latter one is suggested by Oshan et al. (2019) (and also applied in this work) because

it penalizes smaller bandwidths, which result in models that are more complex and

consume more degrees of freedom.

The obtained bandwidth can either be expressed in Euclidean distance or as in

the current work, the k number of nearest neighbours, indicating the range of the

local data-borrowing scheme. This bandwidth is important, because it indicates the

scale at which a variable operates. If the optimal bandwidth approaches n, we can

say that the variable operates on a global scale, i.e. almost all other observations are

considered in the local regression, albeit with different weights through a distance-

decay weighting function. If the optimal bandwidth is relatively low, i.e. just a small

amount of neighbours have non-zero values in the spatial weights matrix, we can say

that the variable operates on a relatively local scale.

GWR is equipped to take into account both the spatial dependence and non-

stationarity that are discussed as issues in the literature section. In formula, the GWR

model looks as follows:

yi = βi0(ui, vi) +
m∑
k=0

βk(ui, vi)xik + εi (4)

The term βk(ui, vi) represents the coefficient of variable k at point i. The set of

longitude / langitude coordinates corresponding to each observation is expressed in (ui,

vi) The parameters of a GWR model can be estimated using the following function,

where X represents the design matrix and W (ui, vi) signifies the n ∗ n spatial weights

matrix:

β(ui, vi) = (XTW (ui, vi)X)−1XTW (ui, vi)y (5)
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In the model, a spatial weight matrix is obtained through use of a kernel function

that emphasises those observations within the bandwidth range that are closer to the

calibration point, and assigns less weight to those further away. Three kernel functions

that can be used for this are the Gaussian, exponential, and bi-square functions, each of

which can have a fixed or an adaptive weighting process. Fixed kernels use a constant

distance, meaning that the number of nearest neighbours varies if the data is not

uniformly distributed. This also implies there can be calibration issues in sparsely

populated regions. The adaptive kernel allows the distance to vary while ensuring that

each local regression uses the same number of nearest neighbours. In this study, an

adaptive bi-square kernel is applied to derive the spatial weights matrix:

Wij =


[

1 −
(

dij
hi

)2]2
, if dij < hi

0, if dij > hi

(6)

The main reason for this is that for both the Gaussian and exponential kernels all

observations retain non-zero weight, so that even observations that are further away

remain of influence (Oshan et al., 2019). For the bi-square kernel, each observation

beyond the distance or bandwidth threshold has weight 0. In effect, for a bi-square

kernel function the derived bandwidth can be interpreted as the distance or number of

k nearest neighbours beyond which the remaining observations have no influence. In

equation 6 the term in between the square brackets shows the distance decay function.

Notice that the weight of the observation is reduced as the distance between location i

and j (dij) increases. If the distance dij is larger than the bandwidth at location i (hi),

the assigned weighting for that observation is equal to 0, indicating that the observation

is not included in the local regression. Once the kernel function and bandwidth selection

method have been decided, a GWR model can be calibrated.

4.2.2 MGWR and Spatial Scale Variation

Even though GWR appears to be superior to other available methods for real estate

appraisal, it still operates under the assumption that the bandwidth is the same for all
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of the parameters. In instances where there are multiple spatial scales present, some of

those scales are bound to be misspecified and may result in biased estimates. MGWR

provides a solution for this, by allowing each variable to have a distinct scale. This is

expressed in the following function:

yi = β0i(ui, vi) +
m∑
k=0

βbwk(ui, vi)xik + εi (7)

Equation 7 looks similar to the GWR model in Equation 4, but includes the term

βbwk, indicating the bandwidth for calibration of the kth relationship. Different band-

widths would imply that the relationships between the explanatory variables and the

log of price on any given location have different spatial weighting matrices. For ease of

reference, we will refer to processes as local if the optimal derived bandwidth is within

the 5th percentile of the total sample size, i.e. smaller than 180. We distinguish the

processes as global if they appear to operate on the scale of the total sample size, i.e.

close to 3632. Standardization of the variables (a Z-transformation so each variable

has mean = 0 and standard deviation = 1) allows the bandwidths to be interpreted

as direct indicators of the spatial scale of the relationship between each explanatory

variable and the log of price. If standardization is not applied the bandwidths also

reflect the scale and variation in each variable, but it does make the results easier to

interpret (Oshan et al., 2019).

All three models described in this chapter are applied to the data, in order to com-

pare the outcomes and model fits. The global hedonic model is the only model that

includes locational fixed effects (variable NBH ), so we can observe differences between

the discreet (GHM) and continuous (GWR and MGWR) approach to modelling spatial

heterogeneity. It can be argued that the neighbourhood a house belongs to affects the

housing price for reasons other than merely location, as the reputation of neighbour-

hoods (even those that share borders) may be very different. Therefore, even though

these fixed effects may not be sufficient to fully capture spatial heterogeneity in the

data, they may capture other unobserved effects. It would therefore make sense to

include them in the GWR and MGWR models as well. However, this is not done for
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several reasons. First of all, given the fact that each observation can only belong to one

(of approximately 65) neighbourhoods, the localized models are very prone to singular

matrices (or multi-collinearity) as there may be no variation for local subsets with a

lower bandwidth. Second of all, the backfitting algorithm that retrieves the optimal

bandwidth per variable would likely be running for several days to run a single model.

Although this is not a problem in itself, the principal objective of this research is to

demonstrate the spatial scales of processes, and not necessarily to achieve a model with

the highest R2. Although that can quite possibly also be achieved using MGWR, the

author leaves that for future research.

With regard to GWR and MGWR, several models are calibrated, using a different

number of variables each to explore the robustness of the bandwidth selection proce-

dure. Unfortunately, due to technical constraints, two of the variables (CAT and BP2)

can only be included in the MGWR and not in the GWR. This is because the iteration

process that searches for the optimal bandwidth(s) has a starting value that can not

be altered for the GWR. For some of the binary variables, especially those with little

variability, this may lead to multicollinearity issues in lower bandwidths. MGWR has a

way to circumvent this problem, by allowing the user to specify an initial search value.

5 Results

To study the first hypothesis regarding spatial heterogeneity, we discuss the spatial

patterns that are captured in the maps in Figure 2 and Figure 3. Furthermore we

compare the model fits as shown in the bottom of Table 2 as well as the mean, minimum

and maximum coefficient values per variable as displayed in Table 3. To provide

evidence for the second hypothesis on spatial scales we discuss the bandwidths that

are displayed in Table 2 as well as the colour maps in Figure 3.

5.1 Interpretation of MGWR and Spatial Heterogeneity

Although it was almost certain that we would find spatial heterogeneity based on the

nature of real estate markets and the uniqueness of properties under observation, it

is interesting to see the patterns that emerge. First of all, if we compare the GWR-
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Figure 2: Local R2 statistics for GWR-11s Model (n = 3632)

11s model (the number indicates the number of variables included, with s signifying

that the variables are standardized) with the GHMs model we see that the model fit

improves if the relationships are allowed to vary over space (Table 2), as opposed to

the use of only locational fixed effects. For the GWR-11s model in specific, we can see

in Figure 2 that the explanatory power of the model differs over space, with some areas

reaching an R2 statistic of over 0.90 where for areas with the lowest fit this value reaches

no more than 0.75. Within each variable there is also a fairly large dispersion between

the size of the coefficients, as is observed in the minimum and maximum values of the

coefficients in Table 3. Per illustration, Figure 3 shows the distribution of coefficients

for each local regression over space.

We will briefly discuss the sign and magnitudes of the coefficients.3 M2 is positive

and mainly significant throughout the city, although the magnitude of the coefficients

takes on values between 0.13 and 0.96 on a 1-point scale, signalling a large degree

of heterogeneity. There are no clear patterns or clusters that form. The spread of

coefficients for CEILING is more modest, with estimates between approximately 0.05

and 0.09. A clear pattern emerges, with the effect being smaller in the northeast than

in the rest of the city. The presence of this cluster is an indicator of spatial dependence.

MAINTIN fluctuates slightly, with negative outliers in the centre of the city, amongst

a cluster of non-significant (grey) coefficient estimates. MAINTOUT has a higher

3Unfortunately, we have no data on demographics per neighbourhood. More research will have to

point out how the effects can be related to demographic information such as mean income or average

household size.
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dispersion but the effect is not statistically significant in nearly all local regressions.

ISOL has a slight variation in coefficient estimates, with higher values in the west and

center of the city than in the east. The number of floors (nFLOORS ) is negatively

related to housing price in all locations, although it appears that about half of the

observations are not significant at the .05 level. This relationship is relatively stable

over space. The number of rooms shows spatial clustering with the positive relationship

gradually becoming larger as we move from east to west. The effect of having a garden

is positive, as could be expected, with the effect being fairly uniform over space. The

parameter estimates in the east are not statistically significant. Throughout the city,

having a house as opposed to having an apartment yields a higher selling price, ceteris

paribus, although the effect is not significant in the center. This might be because

the bandwidth is relatively small (342) and there are not many houses in the centre

of Rotterdam. Both dummy variables for the building period (BP1 and BP2) show

mainly non-significant parameter estimates, although buildings built after 1990 (BP2)

appear to yield a higher sales price, ceteris paribus, compared to the reference category,

which represents houses built before 1945. This effect is predominant in the southeast

of the city. Adjacency to water (LOC1) is positively correlated to transaction price

across the city, with higher coefficient values in the neighbourhood of Hillegersberg in

the centre north. The effect of having a free view LOC2 is positive and stationary over

space, with non-significant values in the east.

Due to the apparent nonstationarity of many parameters as described above, Hy-

pothesis 1 is not rejected, as there is clear evidence of spatial heterogeneity in the

data.

5.2 Spatial Scale of Parameters

The main objective of this paper was to explore the spatial scale of processes. The

second hypothesis states that the optimal bandwidth, measured as the k number of

nearest neighbours, is not the same for all parameters. Support for this hypothesis

can be found in Table 2, where the GWR with fixed bandwidths is compared to the

MGWR model that allows spatial variation between variables. We observe that in the

MGWR model the AICc is lower and the adjusted R2 is higher relative to the GWR

17



(a) Intercept (BW = 43) (b) M2 (BW = 46)

(c) Ceiling (BW = 1291) (d) MaintIn (BW = 642)

model. This suggests that the model with spatial variation over parameters (MGWR)

best represents the data. Applying the same bandwidth to all variables therefore likely

introduces bias to the model, as can be observed through the difference in coefficients

between both models.

The results provide us with unique insights into the locality or globality of processes.

At the local level (meaning only the closest observations are included in the distance-

decay weighting scheme) we encounter the variables lot size (in M2) with a bandwidth of

46, and the state of maintenance of the house exterior (MAINTOUT ) with a bandwidth

of 57. For the latter, we hypothesized that the effect would indeed be local because of

local spillovers due to aesthetics. However, the predominant grey color shows that in

almost all of the cases the local coefficient estimates are not statistically significant for

this variable. The outcome for lot size (M2 ) is more surprising, as we expected this
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(e) MaintOut (BW = 57) (f) Isol (BW = 3626)

(g) nFloors (BW = 383) (h) nRooms (BW = 3632)

to operate on a global scale. One possible explanation for the locality of M2 is that

an individual’s utility could be based not on absolute, but on relative comparisons.

In this instance, it could mean that people care more about lot size relative to the

lot size of the closest neighbouring houses. This notion is supported by earlier works

such as a thought experiment by Frank (2005) where individuals favour a situation

with a smaller absolute but a larger relative house size. A recent study by Bellet

(2019) provides further empirical evidence on the existence of positional externalities

in housing size.

Variables that appear to have a global effect are the degree of isolation, the number

of rooms, and whether the house has a free view (LOC2). For these variables a GHM

is therefore likely to perform similarly to a (M)GWR. It makes sense for the first two

variables to be global, because it is unlikely that the degree of isolation or number of

rooms of only nearby houses affect the price. Rather, it is logical that house owners or
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(i) Garden (BW = 1249) (j) CAT (BW = 342)

(k) BP1 (BW = 517) (l) BP2 (BW = 156)

(m) Loc1 (BW = 644) (n) Loc2 (BW = 3626)

Figure 3: MGWR Parameter Estimates and Bandwidth

buyers consider houses with similar features over a wider area of space, as the degree

of isolation and number of rooms can not be observed from outside and are therefore
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Table 2: Comparison GWR-11s & MGWR-13s

GHMs GWR-11s MGWR-13s

Variable Coefficient Coefficient Bandwidth Coefficient Bandwidth

Intercept −0.005 176 −0.022 43

M2 0.541*** 0.560 176 0.508 46

CEILING 0.088*** 0.092 176 0.074 1291

MAINTIN 0.085*** 0.069 176 0.092 642

MAINTOUT 0.034*** 0.037 176 0.024 57

ISOL 0.024*** 0.049 176 0.032 3626

nFLOORS −0.090*** −0.034 176 −0.052 383

nROOMS 0.040*** 0.042 176 0.038 3632

GARDEN 0.035*** 0.059 176 0.040 1249

CAT −0.151*** −0.121 342

BP1 −0.042*** −0.061 176 −0.051 517

BP2 0.058*** 0.033 156

LOC1 0.072*** 0.067 176 0.050 644

LOC2 0.016*** 0.013 176 0.014 3364

NBH β14−77

ENP 575 613

AICc 1982 1297

Adj. R2 0.891 0.913 0.933

The GHM model is standardized. *** indicates that the coefficient is significant at the

0.01 level.

unlikely to generate local spillovers. With regards to houses having a free view,

Future research will have to point out if these scales and relationships hold over a

larger area, and if so what might be the underlying cause(s).

Interpretation of the intercept doesn’t make sense, as the variables are all stan-

dardized. The standardization also makes it harder to interpret the exact effect of

each variable on the transaction price. However, because all variables now operate on
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Table 3: MGWR-13s Coefficient Estimates

Coefficient

Variable Mean Std. Dev. Min. Max. Bandwidth

Intercept −0.022 0.451 −0.924 0.964 43

M2 0.508 0.120 0.135 0.954 46

CEILING 0.074 0.120 0.055 0.091 1291

MAINTIN 0.092 0.039 −0.060 0.139 642

MAINTOUT 0.024 0.093 −0.516 0.532 57

ISOL 0.032 0.002 0.027 0.036 3626

nFLOORS −0.052 0.047 −0.137 0.058 383

nROOMS 0.038 0.001 0.036 0.039 3632

GARDEN 0.040 0.021 −0.001 0.064 1249

CAT −0.121 0.055 −0.249 −0.027 342

BP1 −0.051 0.052 −0.171 0.022 517

BP2 0.033 0.112 −0.213 0.326 156

LOC1 0.050 0.021 0.013 0.108 644

LOC2 0.014 0.004 0.005 0.017 3364

the same scale we can deduce the relative size of each of their effects, where values

closer to 1 indicate a larger effect. Not surprisingly, the size of the residence (M2 ) has

-on average- the largest role in explaining housing prices, even though this differs sub-

stantially over space. Table 3 shows the distribution of each effect over all 3633 local

regressions, and is another stellar demonstration of spatial heterogeneity: We observe

relatively large differences between the minimum and maximum regression coefficients

for most variables, as is also reflected in the relatively high standard deviations.

5.3 Robustness Checks

To check how robust the results regarding the spatial scales are, the bandwidth selection

procedure is run for several models containing different numbers of variables (Table 4).
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Table 4: Bandwidths and Model Statistics for Different (M)GWR Calibrations

Model MGWR-8s MGWR-8u GWR-11s MGWR-11s MGWR-13s

Intercept 43 129 176 43 43

M2 43 43 176 45 46

CEILING 3608 508 176 1212 1291

MAINTIN 642 1243 176 642 642

MAINTOUT 48 307 176 47 57

ISOL 114 458 176 387 3626

nFLOORS 381 420 176 343 383

nROOMS 3623 3632 176 3632 3632

GARDEN 343 263 176 367 1249

CAT 342

BP1 176 1005 517

BP2 156

LOC1 176 502 642

LOC2 176 2306 3364

ENP 649 291 575 629 613

AICc 1665 -2177 1982 1557 1297

Adj. R2 0.927 0.9 0.913 0.929 0.933

The number behind the model represents the number of variables used, where the last letter

indicates a model with standardized (s) or unstandardized (u) variables. ENP indicates the

effective number of parameters, and AICc is the corrected Akaike Information Criterion.

Overall, the optimal bandwidths for most variables vary only marginally. However,

inclusion of the category (CAT) and BP2 variable yields a substantial increase in the

optimal bandwidth for ISOL, GARDEN and LOC2, and it results in a decrease for BP1.

A possible and logical explanation for this is that the models that do not include these

variables suffer a form of omitted variable bias. The case can be made that houses

are more likely to have a garden than apartments. Furthermore, changing policies

over the years may result in more houses being constructed in one period, and more
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apartments in another. The sharp increase for isolation is odd, but can be tied to the

better specification of building periods, as more recently constructed residences tend

to have different (often better) isolation than older buildings.

6 Conclusion

6.1 Discussion and Implications

This study set out to investigate the spatial scales and the degree of spatial heterogene-

ity present in the Rotterdam real estate market. The problem we intended to tackle

is formulated by Helbich et al. (2014), who state that there is an absence of empiri-

cal consensus on the locality or globality of processes in hedonic house price models. I

demonstrated the different spatial scales at which processes determining housing prices

operate with help of a MGWR model. Through use of AICc optimization, different

bandwidths were found to be optimal for different variables. This suggests that spatial

heterogeneity in housing price markets can not simply be captured using locational

dummy variables, and that models determining housing price will have to be adjusted

accordingly. The MGWR model developed by Fotheringham et al. (2017) proves to be

an interesting and effective approach in tackling the problems of spatial dependence

and heterogeneity.

The significance and relevance of the results is two-fold. Firstly, the MGWR model

in a hedonic house price context appears to be a better specified, and more accurate

model than the GWR model, which on repeated occasions proved to be superior to

several other methods. The current work -to the best of my knowledge- is the first

hedonic house price application of a MGWR. This apparent superiority indicates that

practitioners of real estate appraisal, both in the academic world as in the field, stand to

benefit from use of this model. The second implication of this research relates to policy.

Through estimation of the bandwidths for each variable, we gain insights into the scale

at which processes operate. This means that parties with a vested interest in elevating

the value of properties in a certain neighbourhood (for instance a local government in

an attempt to increase welfare locally) can more efficiently specify investment targets.

In particular, using knowledge on the scale of processes, whether they be local or global
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in nature, the extent of spatial spillovers from investment can be effectively evaluated.

6.2 Limitations and Future Research

It is the author’s belief that MGWR has a lot of potential for applications within the

field of real estate appraisal, and the current work has only scratched the surface. There

are some limitations and issues that are not touched upon in this work, while they merit

future research. First of all, MGWR does not allow the inclusion of categorical vari-

ables, so each category would have to be added as a separate binary variable. For some

of the variables this was done (LOC and BP to be precise), but other variables, for in-

stance NBH, representing one of 65 different neighbourhoods, were deliberately left out

to maintain a clear interpretability and prevent multicollinearity issues for parameters

with lower bandwidths. Furthermore, not all variables that you may want to see in a

hedonic housing price application were present in the data set. Such variables include

neighbourhood effects, e.g. the rate of unemployment or the proportion of academics

in an area. A study by Kestens et al. (2006) suggests that detailed household-profile

data helps explain spatial heterogeneity while reducing spatial dependence. The re-

sults of their study show that a household’s education level plays a significant role, as

higher-educated households tend to pay a premium to fulfill social homogeneity. It is

possible that the vector of NBH variables in the GHM partially captured these effects

(therefore potentially rasing the explanatory power of the model) while it was not used

in the localised models. Another limitation of the current work is that there is no

further distinction with regards to the time of the transaction, other than the year in

which it took place (2018). Most likely a model that does include this will explain more

of the variation, as heated housing markets may often differ several percentage points

between the beginning and end of a year. This was certainly the case for Rotterdam

in 2018.

This study did not address or try to explore the out-of-sample prediction accuracy

of MGWR in comparison with other methods. Future research will have to demonstrate

whether the MGWR model is not only effective for modeling spatial heterogeneity, but

if its potential to perform accurate real estate appraisal is superior to that of other

advanced statistical techniques. It should also be noted that the MGWR was applied
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in an urban context only, due to the larger availability of data on similar properties in

the city. In theory, MGWR could be applied to more rural areas as well, although the

standard errors will likely be higher, with less precise estimates as a result. However, it

can be argued that the spatial scale of certain processes may differ between urban and

rural areas. In particular, the lack of landmarks or a business centre in rural centres

could induce higher bandwidths. Finally, future research could incorporate a larger

study sample that includes several cities. This way, the economic interconnectedness

of housing markets can be explored for each variable.
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7 Appendices

Table A1: Description of Variables

Variable Description

Transaction price Selling price in euros (logarithm of)

M2 Lot size in squared meters

CEILING Height of the ceiling in metres

MAINTIN State of interior maintenance

MAINTOUT State of exterior maintenance

ISOL Degree of insulation

nFLOORS Number of floors

nROOMS Number of rooms

GARDEN Presence of a (private) garden (1)

CAT House (0) or apartment (1)

BP Matrix of binaries indicating building period:

<1945 (BP1+ BP2 = 0);

1945 − 1990 (BP1 = 1);

> 1990 (BP2 = 1)

LOC Matrix of binaries indicating location:

None (LOC1 + LOC2 = 0);

Next to water (LOC1 = 1

Free view (LOC2 = 1)

NBH Matrix of binaries indicating neighbourhood,

to be used in the global hedonic model only

LONG / LAT Longitude and latitude coordinates that are

tied to each observation
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Due to the recent development of the MGWR model, and the fact that the re-

searchers and developers are still adding features to the model, it can only be used

in its original Python environment where it can be imported as a module, or in the

Graphic User Interface (GUI) software that was developed by the researchers. I chose

the former as it provides more options (e.g. manually setting the bandwidth for a

MGWR model), but the software should suffise for general purposes and can be down-

loaded at no expense. For a better overview of how to implement the code one can

contact the author or refer to the MGWR Github page or the accompanying imple-

mentation paper by Oshan, Li, Kang, Wolf, and Fotheringham (2019).
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