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at the McGill University in Montreal, Canada. This article belongs to one of his conferences and is an
expanded abstract of his talk, to which he has added the most important references that he used at the
conference. The approach of almost all current cancer therapies is essentially the same as those practiced
by the Greeks and Romans, namely, to remove cancer tissues at a stage early enough to prevent cancer
from overwhelming the body. While initial treatment regimens are often based on specific genomic data
and are effective in many cases, they can sometimes be followed, usually after a period, by the
reoccurrence of cancer as untreatable metastatic disease1, often with poor prognoses due to treatment
resistance2.
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 The approach of almost all current cancer therapies is essentially the same as those 

practiced by the Greeks and Romans, namely, to remove cancer tissues at a stage early enough to 

prevent cancer from overwhelming the body. While initial treatment regimens are often based on 

specific genomic data and are effective in many cases, they can sometimes be followed, usually 

after a period, by the reoccurrence of cancer as untreatable metastatic disease1, often with poor 

prognoses due to treatment resistance2. Over the past several years generating actionable genomic 

data has become more complicated with the discovery of intra-tumor genetic heterogeneity 

(ITGH)3. Indeed, in the case of metastatic disease, it has been proposed that genetic and epigenetic 

heterogeneity has contributed to the inability to successfully eradicate the disease4. This has 

resulted in some questioning as to whether precision medicine can really be the treatment panacea 

that it is claimed to be5. Further, most genomic markers have so far provided only limited insight 

into the mechanisms that control both carcinogenesis and metastasis, perhaps because current 

cancer hypotheses fail to provide an adequate framework with which to analyze the data. 

 Our present understanding of carcinogenesis is based on the hypothesis that cancer cells 

accumulate somatic variation (mutations, amplifications, translocations, etc.), which eventually 

provide a growth advantage to cells undergoing carcinogenesis6. One indication of why this 

hypothesis might be inadequate is the fact that cancer-associated genes are generally not over-

expressed in the tissues from which the cancer develops7. At present identifying common driver 

gene mutations present in tumor tissues is considered one of the keys to understanding the ontology 

of tumors. However, the validity of this concept is being challenged by both accumulating 

evidence of ITGH, and recent evidence of complex single gene variance (CSGV)8. Further, present 

cancer hypotheses have yet to really consider the role that genetic heterogeneity in normal tissues 

may play in carcinogenesis, or even recognize and explain the presence of genetic heterogeneity 

within normal tissues9. 

Therefore, to overcome these problems, a new hypothesis has been proposed based on the premise 

that cancer can be considered a tissue survival strategy and that post-zygotic mosaicism associated 

with ITGH allows tissues to survive changing environmental conditions10. Further, many of these 

somatic mutations would arise relatively early in human fetal development, presumably to prepare 
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organisms to survive environmental changes that they might encounter throughout their lifetime. 

Indeed, early genetic heterogeneity has now been observed in fetal cells11,12. Thus, the hypothesis 

could explain why genetic heterogeneity of cancer-associated genes has been observed in normal 

tissues13,14, and why, post-zygotic single nucleotide mosaicism of cancer-associated genes exists 

in small numbers of cells in both diseased and normal individuals15.  

The hypothesis further suggests a selection-centric approach to cancer treatment that has been 

labeled as ‘strength-based’.  This approach considers selection pressures caused by tissue 

microenvironments to be the critical factors in carcinogenesis and metastasis, rather than the 

accumulation of mutation-based phenotypic changes. The key from a treatment standpoint is the 

evidence that normal cells with wild-type genes exist in tumors, albeit in very small numbers. 

Similarly, cells present in normal tissues that surround tumors can contain cancer-associated 

mutant variant genes. Therefore, rather than just removing cancer tissues, we should promote the 

selection of normal cells within cancerous tissues. Therefore, if we can create tissue micro-

environmental conditions that select normal cells we can change cancerous tissues back to normal, 

as well as make it highly unlikely that the cancer will return. A selection-centric approach to 

treating metastatic disease would similarly focus on preventing the growth of metastases, by 

ensuring that metastatic cells are not selected for by their tissue microenvironments. Recent 

evidence has begun to provide some support for this radical treatment approach by examining the 

possible effects of tissue microenvironments on cancer tissues16,17. 

Almost all studies up until now have examined associations between environmental factors and 

cancer development, but not specifically of tissue microenvironments, although the importance of 

studying these relationships has been acknowledged18. Recently there has been an increased effort 

to identify what these factors might be in cancer tissues. Tools such as mass spectroscopy have 

allowed increased attention to be given to the carcinogenic role of the tumor microenvironment 

including in both tumorigenesis19 and differential tissue responses to therapy20. However, as cells 

and tissues exist in complex three-dimensional environments, and contain both extra- and 

intracellular components, to fully analyze these environments will require new technologies 

including; atomic force microscopy21, quantitative extracellular matrix proteomics22, and single 
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cell analysis23. Finally, analysis of the effects of micro-environmental selection pressures on 

tissues and cells will also require the development of much more sophisticated genetic databases 

than presently exist24. 
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